Главная
16:55
Билет №6

1.    Из каких тактов состоит  рабочий цилиндр в карбюраторном двигателе. Характеристика каждого такта.

 

Рабочий цикл четырехтактного карбюраторного двигателя.

Двигатели внутреннего сгорания отличаются друг от друга рабочим циклом, по которому они работают.
Рабочий цикл - это комплекс последовательных рабочих процессов, периодически повторяющихся в каждом цилиндре при работе двигателя.
Рабочий процесс, происходящий в цилиндре за один ход поршня, называется тактом.
По числу тактов, составляющих рабочий цикл, двигатели делятся на два вида:

  • четырехтактные - в которых рабочий цикл совершается за четыре хода поршня,
  • двухтактные - в которых рабочий цикл совершается за два хода поршня.

На легковых автомобилях отечественного производства применяются четырехтактные двигатели, а на мотоциклах и моторных лодках –двухтактные. О путешествиях по водным просторам поговорим как-нибудь потом, а вот с четырьмя тактами работы автомобильного двигателя разберемся сейчас. Рабочий цикл четырехтактного карбюраторного двигателя состоит из следующих тактов:

  • впуск горючей смеси,
  • сжатие рабочей смеси,
  • рабочий ход,
  • выпуск отработавших газов.


Рис. 8 Рабочий цикл четырехтактного карбюраторного двигателя а) впуск; б) сжатие; в) рабочий ход; г) выпуск


Первый такт – впуск горючей смеси (рис. 8а).
Горючей смесью называется смесь мелко распыленного бензина с воздухом в определенной пропорции. Приготовлением смеси в двигателе занимается карбюратор, о чем мы с вами поговорим чуть позже. А пока следует знать, что соотношение бензина к воздуху 1:15 считается оптимальным для обеспечения нормального процесса горения.
При такте впуска поршень от верхней мертвой точки перемещается к нижней мертвой точке. Объем над поршнем увеличивается. Цилиндр заполняется горючей смесью через открытый впускной клапан. Иными словами, поршень всасывает горючую смесь.
Хочется посоветовать читателю, почаще включать свое воображение, сравнивая сложное с простым. Если вам удастся почувствовать, как бы ощутить на себе те процессы, которые протекают в двигателе, да и в автомобиле в целом, то многие из «секретов» машины станут для вас «открытой книгой».

Например, наверняка каждый из вас видел, как медицинская сестра, готовясь сделать укол, набирает шприцем лекарство из ампулы. За счет перемещения поршня шприца, над ним создается разряжение, которое и засасывает из ампулы то, что позже «вольется» в «мягкое место» пациента. Почти то же самое происходит и в цилиндре двигателя в процессе такта впуска.
Впуск смеси продолжается до тех пор, пока поршень не дойдет до нижней мертвой точки. За первый такт работы двигателя кривошип коленчатого вала поворачивается на пол-оборота.
В процессе заполнения цилиндра горючая смесь перемешивается с остатками отработавших газов и меняет свое название, теперь эта смесь называется – рабочая.

Второй такт - сжатие рабочей смеси (рис. 8б).
При такте сжатия поршень от нижней мертвой точки перемещается к верхней мертвой точке.
Оба клапана плотно закрыты и поэтому рабочая смесь сжимается. Из школьной физики всем известно, что при сжатии газов их температура повышается. Так и здесь. Давление в цилиндре над поршнем в конце такта сжатия достигает 9 - 10 кг/см2, а температура 300 - 400оС.
В заводской инструкции к автомобилю можно увидеть один из параметров двигателя, имеющий название – степень сжатия (например 8,5). А что это такое? Надеюсь сейчас это станет понятно.

Степень сжатия показывает во сколько раз полный объем цилиндра больше объема камеры сгорания (Vп/Vс - см. рис.7). У карбюраторных двигателей в конце такта сжатия, объем над поршнем уменьшается в 8 - 10 раз.
В процессе такта сжатия коленчатый вал двигателя поворачивается на очередные пол-оборота. А в сумме, от начала первого такта и до окончания второго, он повернется уже на один оборот.

Третий такт - рабочий ход (рис. 8в).
Во время третьего такта происходит преобразование выделяемой при сгорании рабочей смеси энергии в механическую работу. Давление от расширяющихся газов передается на поршень и затем, через шатун и кривошип, на коленчатый вал. Вот откуда берется та сила, которая заставляет вращаться коленчатый вал двигателя и, в конечном итоге, ведущие колеса автомобиля.
В самом конце такта сжатия, рабочая смесь воспламеняется от электрической искры, проскакивающей между электродами свечи зажигания. В начале такта рабочего хода, сгорающая смесь начинает активно расширяться. А так как впускной и выпускной клапаны все еще закрыты, то расширяющимся газам остается только один единственный выход - давить на подвижный поршень. Поршень под действием этого давления, достигающего 40 кг/см2, начинает перемещаться к нижней мертвой точке. При этом на всю площадь поршня давит сила 2000 кг и более, которая через шатун передается на кривошип коленчатого вала, создавая крутящий момент. При такте рабочего хода, температура в цилиндре достигает 2000 градусов и выше.

Коленчатый вал при рабочем ходе поршня делает очередные пол-оборота.
Позднее мы вернемся к этим огромным цифрам, похожим на температуры в доменной печи. А пока следует отметить для себя, что процесс рабочего хода происходит за очень короткий промежуток времени, по сравнению с которым, удивленное «хлопание» ресницами ваших глаз после прочтения этого сюжета, длится целую вечность.

Четвертый такт - выпуск отработавших газов (рис.8г)
При движении поршня от нижней мертвой точки к верхней мертвой точке, открывается выпускной клапан (впускной все еще закрыт) и отработавшие газы с огромной скоростью выбрасываются из цилиндра двигателя. Вот почему слышен тот сильный грохот, когда по дороге едет автомобиль без глушителя выхлопных газов, но об этом позже. А пока обратим внимание на коленчатый вал двигателя - при такте выпуска он делает еще пол-оборота. И всего, за четыре такта рабочего цикла, он сделал два полных оборота.
После такта выпуска начинается новый рабочий цикл, и все повторяется: впуск – сжатие – рабочий ход – выпуск... и так далее.

2.       Назначение и устройство АКБ, типы и маркировка, сроки службы, меры по увеличению срока службы

Назначение автомобильной аккумуляторной батареи понятно каждому мало-мальски сведущему в технических вопросах автолюбителю. С первой ее функцией - обеспечением запуска двигателя - мы сталкиваемся каждый день. Есть и вторая - реже применяемая, но от того не менее значимая - использование в качестве аварийного источника питания при выходе из строя генератора. Кроме того, на современных автомобилях с инжекторным впрыском аккумулятор выполняет роль сглаживателя пульсаций напряжения, выдаваемого генератором. Из этого следует, что следует крайне осторожно относиться к отключению аккумулятора на работающем двигателе. Карбюраторному двигателю ничего не будет, а вот как поведёт себя компьютер, управляющий распределённым впрыском - одному богу известно... Можно загубить компьютер.

Любая автомобильная батарея представляет из себя корпус - контейнер, разделенный на шесть изолированных ячеек - банок (см. рис.1).


Маркировка АКБ

6СТ-60А1
(1)(2)(3)(4)

(1) - Цифра, указывающая число последовательно соединенных аккумуляторов в батарее (6 или 3), характеризующая её номинальное напряжение (12 или 6 В соответственно).

(2) - Буквы, характеризующие назначение батареи по функциональному признаку (СТ - стартерная).

(3) - Число, указывающее номинальную емкость батареи в ампер-часах (А-ч).

(4) - Буквы или цифры, которые содержат дополнительную информацию об исполнении батареи (при необходимости) и материалах, примененных для её изготовления, например: "А" - с общей крышкой, буква "3" - залитая и полностью заряженная (если ее нет -батарея сухозаряженная), слово "необслуживаемая",-для батарей, соответствующих требованию ГОСТ по расходу воды, "Э" - корпус-моноблок из эбонита, "Т" -моноблок из термопластичной пластмассы, "М" -сепаратор типа мипласт из поливинилхлорида, "П" -сепаратор-конверт из полиэтилена.

Кроме вышеуказанных обозначений маркировка батареи должна содержать следующие данные:

 - товарный знак завода-изготовителя;

 - номинальная емкость в Ампер-часах (А-ч или Ah);

 - пусковой ток - ток холодной прокрутки при -18°С в Амперах (А).

 - номинальное напряжение в Вольтах (В или V);

 - дата изготовления (две цифры - месяц, две цифры - год изготовления);

 - масса батареи в состоянии поставки с завода;

 - "+" и "-" - знаки полярности;

 - предупреждающие знаки, например: опасно-едкое вещество, не курить, не кантовать, не давать детям и т.п.;

 - уровень залитого электролита (min, max или другие обозначения предельных уровней).

Вся маркировка, предусмотренная требованиями стандартов, наносится на корпус или крышку батареи одним из двух методов:

• шелкография, то есть нанесение краски по специальному трафарету;

• самоклеющиеся этикетки.

В обоих случаях маркировка должна быть четкой, устойчивой к воздействию влаги и электролита, сохраняться в течение всего срока эксплуатации АКБ.

Реальный  срок службы АКБ

В отличие от гарантийного срока реальный (фактический) срок службы стартерной батареи полностью зависит как от её качества, так и от условий работы автомобиля, качества техобслуживания батареи и технических показателей изделий электрооборудования. Условия работы на автомобиле могут существенно различаться. Например, бывает летняя или круглогодичная его эксплуатация. Среднегодовой пробег колеблется от 6-10 тыс. до 80-120 тыс. километров. При этом могут резко различаться показатели работы электрооборудования, в особенности генератора и регулятора напряжения. Большое значение имеет и режим работы различных потребителей энергии, а также наличие дополнительного (нештатного) электрооборудования. Все это приводит к тому, что фактический срок службы стартерных батарей имеет значительный разброс по величине. Наиболее короткий срок "жизни" у АКБ классического исполнения, установленных на автомобилях, работающих в режиме "такси". Интенсивный режим эксплуатации таких машин создает ускоренный, пропорциональный пробегу износ электродов батареи, который по времени может составлять лишь около 1,5 календарных лет. У автомобилей (как личных, так и служебных) с усредненным режимом эксплуатации (при пробеге 15-20 тыс. км в год) срок работоспособности АКБ может доходить до 4-х лет, но лишь при условии неукоснительного соблюдения требований по их техническому контролю и обслуживанию. На практике имели место случаи, когда отдельные батареи на легковых автомобилях успешно работали 6-8 лет. Выход батареи из строя при отсутствии производственного дефекта обусловлен износом пластин, который непрерывно (с различной интенсивностью) происходит, начиная от момента заливки электролита и первой зарядки АКБ. Следует помнить, что максимально длительный срок надежной работы аккумуляторной батареи является результатом внимательного отношения к ней и к состоянию электрооборудования со стороны водителя.

3.    Масла применяемые для механизмов трансмиссии автомобился и сроки их смены

Трансмиссионные масла используют для смазывания зубчатых передач в агрегатах трансмиссии автомобиля (коробке передач, раздаточной коробке, ве­дущих мостах, в рулевых передачах), а также в гидротрансмиссиях. ГОСТ 23652-79 устанавливает следующие марки трансмиссионных масел: Тэп-15, ТСп-10, ТСп-15к, ТАД-17И, ТС3-9гип. Согласно ГОСТ 17479.2-85 данные транс­миссионные масла обозначаются следующим образом: ТМ-2-18 (Тэп-15), ТМ-3-9(ТСп-10), ТМ-3-18(Тап-15В, ТСп-15к, ТАД-17И), ТМ-3-93 (ТС3-9гип). Кро­ме того, в соответствии с ТУ 38.101529-75 изготовляется трансмиссионное масло для промышленного оборудования, известное ранее как масло марки «Нигрол», а в соответствии с ТУ 38.101110-81 — масло ТС-14,5. Наряду с этим выпускаются масла для гипоидных передач автомобилей. Масло ТС (ОСТ 3801260-82) используют для смазывания гипоидных передач автомобилей «Москвич, «Волга», «Чайка» и других автомобилей с подобными передачами.

По условиям применения они сильно отлича­ются от масел для двигателей и имеют другую масляную основу и соответ­ствующий набор присадок. Получают автомобильные трансмиссионные мас­ла при перегонке мазута. Основными присадками для улучшения свойств транс­миссионных масел являются противопенные и противозадирные. В состав противоизносных и противозадирных присадок входит сера в количестве 1,2-3,6% по массе. Масла с такими присадками предназначены для использо­вания в гипоидных передачах ведущих мостов, имеющих большие удельные нагрузки между зубьями шестерен.

Маркировка трансмиссионного масла составляется из сочетания заглавных букв ТА (трансмиссионные, автомобильные), строчных букв п (присадок) или д (дистилляторное) и числового значения кинематической вязкости в сантис-токсах при температуре 100 °С.

В современных автомобилях используют зубчатые передачи различных ти­пов. Особенно широко распространены винтовые передачи. Преимущество их перед передачами с прямыми зубьями — в большей прочности зубьев шесте­рен при равных габаритах, плавной и бесшумной работе. Однако к маслам для винтовых шестерен предъявляют более высокие требования, чем к маслам для шестерен с прямыми зубьями, поскольку скорости скольжения в таких пере­дачах больше.

В агрегатах трансмиссии современных машин трансмиссионные масла вы­полняют следующие функции:

     уменьшают износ деталей
     снижают потери энергии на внешнее трение
     увеличивают теплоотвод от трущихся поверхностей
     предохраняют детали и механизмы от коррозии.

Трансмиссионные масла характеризуются:

     высокими противоизносными, противозадирными и противопиттинговы-
ми свойствами
     хорошей термической и термоокислительной стабильностью
     способностью защищать смазываемые поверхности от коррозионного воз­
действия агрессивных веществ
     пологой вязкостно-температурной кривой и сравнительно малой вязкос­
тью в области отрицательных температур
     стойкостью к пенообразованию
     высокой физической стабильностью в условиях применения и длитель­
ного хранения
     способностью не оказывать вредного воздействия на резиновые уплот-
нительные материалы.

4.    Правила работы при работе с подъемным механизмом автомобиля - самосвала

Работа с подъемным механизмом автомобиля-самосвала сопряжена с повышенной опасностью, так как не исключены случаи самопроизвольного опускания кузова. Когда кузов автомобиля-самосвала поднят, прежде чем приступить к осмотру, ремонту или техническому обслуживанию подъемного механизма, необходимо установить упорную штангу и выключить коробку отбора мощности. В поднятом кузове автомобиля-самосвала никто не должен находиться, а зависший груз нужно удалить скребком с удлиненной рукояткой. Стоять при этом сбоку от автомобиля.

5.    Способ оказания первой помощи при кровотечениях, места прижатых артерий               

Ответить самостоятельно!

6.    Проверить исправность свечи зажигания

Если двигатель с трудом запускается, работает с перебоями, в первую очередь следует проверить исправность свечей зажигания. О способах их тестирования и поговорим. 

Свеча зажигания сохраняет работоспособность при не изношенных электродах, герметичном корпусе, неповрежденных тепловом конусе и изоляторе, а также исправном добавочном резисторе (если он присутствует в конструкции данного узла). 
Существует несколько способов определения работоспособности свечей зажигания: испытания «на искру», внешний осмотр, проверка электроцепи. Первый способ наиболее полно осуществим в условиях СТО (с применением спецоборудования). Автовладельцы могут провести самостоятельную проверку «на искру» только упрощенным способом. 
Проверить искрообразование свечей можно с помощью диагностического тестера, стенда с барокамерой или пьезоэлектрического пробника-«пистолета». 
Специальные тестеры позволяют проверить «на искру» свечи, установленные на двигателе, в реальных условиях их работы (при запущенном моторе). К высоковольтному проводу свечи подсоединяется датчик, и на экране монитора отображается импульсная характеристика свечи, по которой оператор определяет ее состояние. 
«Силовая» проверка 
Максимально объективную оценку исправности свечи зажигания, снятой с двигателя, могут дать испытания на специальном стенде, оснащенном барокамерой. Здесь проверка производится как при атмосферном, так и при давлении, максимально приближенном к эксплуатационному (8 – 12 атм), а также при частотах искрообразования, соответствующих скорости вращения коленвала 1000 – 5000 об/мин. В зависимости от типа системы зажигания авто, на электроды свечи подаются импульсы с величиной напряжения 14 – 20 кВ. 
Исправной считается свеча, у которой при повышенном давлении наблюдается устойчивый разряд между электродами и отсутствует «паразитное» искроообразование с центрального электрода на корпус. 
«Пистолетный» тест 
Тестирование «на искру» можно провести и с помощью более простого оборудования – пьезоэлектрического пробника-«пистолета». Со свечи, установленной на двигателе, снимают высоковольтный провод, надевают втулку пробника, а его наконечник прижимают к «массе» мотора в удобном месте. При нажатии клавиши «пистолета» на свечу подаются импульсы напряжением 11 – 14 кВ. Если при этом загорается лампочка пробника, свеча считается работоспособной. 
Таким же способом проверяют «на искру» снятую с мотора или новую свечу – с тем отличием, что наконечник пробника прижимают к ее гайке (корпусу), а загорание лампочки должно сопровождаться характерным для искровых разрядов «треском». Недостаток этого метода в том, что проверка осуществляется при атмосферном давлении. 
Своими силами 
Существует еще один способ проверки выкрученных из мотора свечей. Он может быть проведен даже в дорожных условиях, если под руками, кроме свечного ключа, ничего нет. 
На наконечник свечи надевают высоковольтный провод, а корпусом прикасаются к «массе» мотора. При прокручивании коленвала стартером между электродами свечи контролируют проскакивание искры. 
Чтобы не получить удар электротоком высокого напряжения, такой тест желательно проводить в резиновых перчатках. 
В случае, если проверки «на искру» не дали положительного результата, свечу следует выкрутить и очистить от нагара. При необходимости – предварительно отмочить в растворителе (например, в ацетоне). Затем свечу желательно промыть (чтобы не началась коррозия электродов) бензином и продуть сжатым воздухом (или «высушить» электрофеном). 
Визуальный осмотр 
Такой метод позволяет обнаружить нарушенный вследствие эрозии электродов искровой промежуток свечи, а на тепловом конусе – нагар, трещины, сколы и/или неудаляемые загрязнения в виде токопроводящих дорожек (последние образуются, если двигатель работал на некачественном топливе). По этим «мостикам» искра утекает на «массу», минуя искровой промежуток. 
Если изменившийся зазор между электродами удалось отрегулировать в соответствии с рекомендациями автопроизводителя, свеча еще «послужит». При более серьезных повреждениях ее придется заменить. 
У «выдержавших» осмотр свечей следует проверить электроцепь центрального электрода. Для этого свечу «прозванивают» тестером. Если между центральным электродом и наконечником есть «контакт» (при наличии исправного резистора прибор покажет сопротивление 4 – 6 кОм), то причиной отсутствия искры у свечи, установленной на двигатель, может быть повреждение изолятора. 

Способы упрощенной проверки свечей зажигания.





 

 

 

 

 

 

 

 

 

 

Сделать бесплатный сайт с uCoz