Главная
14:21
Билет №32

1. Что такое детонация и ее признаки.

 Как происходит нормальное сгорание бензина в двигателе?

В карбюраторном двигателе топливо сгорает в два этапа. Первый продолжается с момента подачи электрической искры по углу поворота коленчатого вала до начала воспламенения. В этот период топливо окисляется, нагревается и воспламеняется. Второй период - непосредственное сгорание - продолжается до максимального подъема давления от расширяющихся продуктов сгорания и заканчивается спустя несколько градусов после верхней мертвой точки (ВМТ). Чем выше температура рабочей смеси к моменту подачи искры, тем интенсивнее происходит сгорание. По мере сгорания горючих составляющих скорость процесса горения уменьшается, и поршень перемещается вниз (к нижней мертвой точке). Объем, занимаемый продуктами сгорания, увеличивается, совершается полезная нормальная работа двигателя.
При нормальном сгорании скорость распространения фронта пламени составляет 20...40 м/с. На скорость сгорания существенное влияние оказывают химический состав и количество топлива, его соотношение с воздухом, величина остаточных газов в цилиндре, температура и давление смеси, конструкция камеры сгорания и т.д. Наиболее интенсивно идет процесс при небольшом обогащении горючей смеси (а =0,95). Дальнейшее обогащение или обеднение смеси снижает скорость горения (в первом случае увеличивается неполнота сгорания топлива, во втором - расходуется тепло на нагревание избыточного кислорода и азота).
В двигателях с более высокой степенью сжатия процесс сгорания интенсифицируется: повышаются температура и давление горючей смеси, при определенных условиях может наступить детонация - взрывное сгорание бензина.

Что такое детонация и каковы ее внешние признаки?

Детонационное сгорание чаще всего происходит при неправильном выборе бензина для двигателей с высокой степенью сжатия. При детонационном горении скорость распространения фронта пламени резко увеличивается, достигая 1500...2000 м/с. Поскольку пространство камеры сгорания невелико, упругие детонационные волны многократно ударяются и отражаются от стенок камеры сгорания, что вызывает характерный для детонации металлический стук. Отражающиеся ударные волны нарушают нормальный процесс сгорания, вызывают вибрацию деталей двигателя, в результате чего значительно возрастает износ. Выпускные газы приобретают темный, иногда черный цвет, т.е. при детонации увеличивается неполнота сгорания топлива.
Горячие газы, ударяясь о стенки цилиндра, повышают коэффициент теплопередачи и вызывают перегрев двигателя. Температура и давление оставшейся части рабочей смеси сильно повышаются, что также способствует перегреву деталей двигателя. Обычно детонация возникает в одном из цилиндров двигателя, но может быстро передаваться на другие. При сильной детонации возможны пригорание колец, прогар клапанов, поршней, разрушение подшипников. Внешние признаки и последствия детонации (износ, разрушение деталей) в значительной степени обусловлены ее силой.
Интенсивность детонации зависит от того, какая часть циклового заряда топлива перейдет во взрывное сгорание, что определяется главным образом химическим строением углеводородов топлива, температурой и давлением газов. Если нормально сгорает 93...95 % рабочей смеси, а детонирует 5...7 %, то наблюдается слабая детонация. Если же со взрывом сгорает 20...25 % циклового заряда, то возникает очень сильная детонация, часто приводящая к аварии.
При работе двигателя даже с незначительной детонацией, особенно на режимах разгона и в тяжелых дорожных условиях из-за увеличения максимального давления сгорания, механического и теплового воздействия ударной волны, усталостных явлений в металле, вызванных вибрацией, значительно возрастает износ деталей цилиндропоршневой группы. При детонационном сгорании пленка масла на стенках цилиндра сгорает и срывается под действием ударной волны.

В чем сущность детонационного сгорания?

Основная причина возникновения детонации - образование и накопление в рабочей смеси активных перекисей (кислородсодержащих веществ), которые разлагаются в последней фазе горения, выделяют избыточную энергию и вызывают взрывное сгорание топлива.
Пероксиды (R - О - О - R) и гидроперекиси (R - О - О -Н) - это первичные продукты окисления углеводородов топлива. Они образуются при прямом присоединении молекулы кислорода к углеводородам. Если присоединение молекулы происходит по С - С связи, получается перекись, а если по С - Н связи, то гидроперекись. При дальнейшем окислении накапливаются альдегиды, органические кислоты, спирты и другие соединения Конечными продуктами являются углекислый газ и вода.
Процессы окисления носят цепной характер. Согласно теории цепных реакций, вместе с образованием конечных продуктов окисления восстанавливаются нестойкие активные соединения, которые вновь разлагаются, выделяют теплоту и становятся новыми очагами реакций окисления. В результате непрерывно повторяющихся реакций появляются цепи с большим числом активных центров, вызывающих самоускорение реакции.
В двигателе окисление топлива кислородом воздуха начинается в процессе наполнения и сжатия горючей смеси. Чем выше степень сжатия, тем больше давление и температура цикла, интенсивнее протекают процессы окисления. Эти процессы еще более энергично продолжаются после воспламенения топлива, особенно в тех порциях рабочей смеси, которые сгорают последними: здесь количество продуктов окисления максимально. Когда концентрация нестойких соединений достигает критического значения для данного вида топлива, происходит взрывное сгорание оставшейся части несгоревшей рабочей смеси.
Очевидно, что из многочисленных факторов, препятствующих детонационному сгоранию, наиболее важным является правильный подбор химического состава бензина для данного типа двигателя. Если бензин обладает малой детонационной стойкостью, то в нем накапливается много перекисных соединений, способных выделять атомарный кислород и вызывать детонацию. У бензинов с высокой детонационной стойкостью концентрация продуктов окисления недостаточна для возникновения детонации.

2.

Развал-схождения

 

Что такое "сход-развал" (он же развал-схождение)?
Общеизвестно, что любое вмешательство в ходовую часть автомобиля влечет за собой изменения углов установки колес и как следствие поведение автомобиля на дороге. Параметры развал-схождения зависят так же и от других факторов - давление в шинах, износ резины, люфты в ходовой части и т.п. Для обеспечения хорошей устойчивости и управляемости автомобиля передние колеса устанавливают под определенным углом относительно элементов кузова и подвески автомобиля. Конструкция передней подвески большинства моделей автомобилей позволяет регулировать: схождение, развал и кастер.

 

Развал — это угол между вертикалью и плоскостью вращения колеса автомобиля и считается отрицательным, если колёса направлены верхней стороной внутрь или положительным, если верхней стороной наружу. Развал меняется с изменением крена автомобиля. Зрительно это можно увидеть у тяжёлых грузовиков «Татра»: на незагруженном автомобиле такой большой развал задних колёс, что машина едет только на внешних шинах. Нулевой развал обеспечивает минимальный износ шин и следовательно повышается срок службы покрышек. Отрицательный развал улучшает устойчивость на поворотах.

 

 

 

 

Схождение — угол между направлением движения и плоскостью вращения колеса. Очень часто говорят о суммарном схождении двух колёс на одной оси. В некоторых автомобилях можно отрегулировать схождение, как передних, так и задних колёс. Схождение — это расстояние между задними кромками колёс, минус расстояние между передними кромками. Именно неправильно отрегулированное схождение является основной (но не единственной) причиной повышенного износа покрышек. Одним из первых признаков неправильно установленного схождения является визг покрышек в повороте при небольшой скорости. При правильной установке и аккуратной езде срок службы колеса превышает 100 000 км, а при схождении в 50 и более мм покрышка полностью сотрётся менее чем за 1 000 км.

Кастр, кастер или кастор — угол между вертикалью и проекцией оси поворота колеса на продольную плоскость автомобиля. Продольный наклон обеспечивает самовыравнивание рулевых колёс за счёт скорости автомобиля. Спортсмены устанавливают данное значение на несколько градусов выше от заводских параметров, что делает ход автомобиля устойчивее, а также повышается стремление авто к прямолинейному движению.

 

Зачем нужно проверить развал-схождение?
Развал-схождение необходимо делать по нескольким причинам. Во-первых, автомобиль после развал-схождения будет обладать лучшей курсовой устойчивостью, то есть машину не будет уводить в сторону и она будет хорошо слушаться руля. Во-вторых, машиной будет легче управлять, она станет более манёвренной и менее склонной к заносам. В-третьих, наличие правильных параметров развал-схождения позволяет экономично расходовать топливо и увеличивает срок службы покрышек колес.

Самая передовая система развал-схождения
Компьютерный стенд развал-схождения Hunter WinAlign с навесными датчиками с инфракрасными сенсорами, установленный в нашем техцентре в Западном округе, на Можайском шоссе, 165, Москва, позволяет выполнить развал-схождение еще быстрее и точнее. Применяя патентованные технологии, система развал-схождения Hunter с датчиками высокого разрешения HawkEye предлагает точный и быстрый высокопроизводительный инструмент для диагностики и регулировки развал-схождения, занимая короткое время. Благодаря новым улучшенным и точным камерам HawkEye™ и мишеням высокого разрешения обмен информацией с компьютером происходит 8 раз в 1 секунду, что обеспечивает высокую скорость и точность измерений, четыре камеры непрерывно фотографируют проекции геометрических фигур на мишенях, устанавливаемых на колесах. Установленные на перекладине рамной конструкции по двум углам четыре камеры (по две в каждом углу) окружены массивом светодиодов, выполняющих роль фотовспышки. Светодиоды вспыхивают с частотой около 2 Гц (8 раз в секунду). Камеры с помощью цифрового процессора, к которому они подключены, способны по сфотографированной проекции фигуры определить все параметры для регулировки.

 
Измерения отправляются на распечатку и можно наглядно показать владельцу автомобиля неточности развал-схождения и необходимость замены запчастей и проведения ремонта. После прохождения регулировки сход-развала на стенде Hunter 3D Вы обязательно почувствуете неповторимый эффект контроля над дорогой, а цветная и легко читаемая распечатка результатов значений до и после регулировки поможет легко оценить работу мастера.


Благодаря своевременной диагностике и регулировке развал-схождения автомобиль имеет:



хорошую устойчивость на дороге;
легкую управляемость и отличную маневренность;
уменьшается склонность к заносам или опрокидыванию в экстремальных ситуациях;
хороший накат, следовательно, экономия топлива;
максимальный срок службы шин.

3. Гидровакуумный усилитель ножного тормоза

Гидровакуумный усилитель дает возможность останавливать полностью нагруженный автопоезд с меньшей затратой физических сил водителя.

Принцип действия усилителя заключается в использовании разрежения во всасывающей трубе двигателя для создания дополнительного давления в системе гидротормозов.

При выходе из строя гидровакуумного усилителя тормозная система автопоезда будет работать, но при этом возрастет величина

усилия, прилагаемого водителем к педали тормоза, и увеличится путь торможения автопоезда. Гидровакуумный усилитель (фиг. 243) крепится к левому лонжерону рамы и состоит из камеры усилителя, гидравлического цилиндра и клапана управления.

Корпус камеры 1 состоит из двух штампованных одинаковых половинок, связанных между собой хомутами. Внутри корпуса камеры установлены: диафрагма 2, пружина 5 и толкатель поршня 4. Толкатель поршня одним концом соединен с тарелкой 3, а вторым — с поршнем 9 цилиндра усилителя. Корпус камеры соединяется со всасывающей трубой и атмосферой через клапан управления.

Усилитель крепится на двух кронштейнах к левому лонжерону рамы.

В гидравлическом цилиндре 14 усилителя установлен поршень 9 и корпус с уплотнителями. Внутри поршня помещен клапан 7, который прижимается к седлу пружиной 10.

Клапан бывает закрыт, когда работает усилитель, и открыт после полного расторма-живания, когда толкатель 6 клапана дойдет до упорной шайбы. Воздух из цилиндра удаляется через перепускные клапаны 13.

В корпусе клапана управления  (фиг. 244) установлены два толкателя — большой 4 и малый 3, которые опираются на диафрагмы 10. Большой толкатель при повышении давления в гидравлической системе нажимает на коромысло , которое управляет открытием и закрытием атмосферного и вакуумного клапанов.

Работу гидровакуумного усилителя можно уяснить по приведенной схеме (фиг. 245). Если двигатель работает и тормозная педаль не нажата, то вакуум, образующийся во всасывающей трубе, передается в полости III и IV клапана управления и в полости камеры усилителя.

Давление на диафрагму 2 усилителя с обеих сторон будет одинаково, и она под действием пружины займет исходное положение.

При торможении усилие от педали передается тормозной жидкости главного цилиндра. Жидкость, проходя через отверстие в поршне 9 цилиндра 14 усилителя, идет в гидравлическую магистраль рабочих тормозных цилиндров колес автопоезда. Одновременно тормозная жидкость поступает в полости  и  клапана управления и прижимает диафрагмы к своим толкателям.

В первоначальный момент давление тормозной жидкости одинаково во всей гидравлической магистрали. При этом большой толкатель создает усилие, примерно в три раза боль-

шее, чем малый толкатель, за счет увеличенной площади его опорной части и, перемещаясь в направлении малого толкателя, закрывает вакуумный клапан.

Полости  н IV разобщаются между собой, но разрежение в них остается. Атмосферный клапан в этот момент еще закрыт.

При дальнейшем повышении давления жидкости на толкатель открывается атмосферный клапан. Наружный воздух через фильтр поступает в полость IV, а оттуда через трубопровод в полости камеры усилителя.

Разность давлений в полости камеры усилителя передается через диафрагму и толкатель на поршень цилиндра усилителя, в результате чего создается дополнительное давление в гидравлической магистрали.

При снятии нагрузки с тормозной педали давление в гидравлической магистрали между главным цилиндром и клапаном управления падаег. Это дает возможность пружине в клапане управления за счет усилия ее сжатия поставить в исходное положение большой и малый толкатель. При этом закрывается атмосферный клапан и открывается вакуумный клапан. В полостях , IV камеры усилителя устанавливается одинаковый вакуум. Диафрагма, под действием пружины, отойдя влево, вместе со штоком вернется в исходное положение. Поршень 9 дойдет до упорной шайбы, и откроется клапан 7.

Жидкость, вытесненная при торможении в магистраль, возвращается обратно в главный цилиндр, и тормозная система полностью растормаживается.

В системе вакуумного трубопровода, между всасывающей трубой и гидровакуумным усилителем, установлен запорный клапан, который автоматически разъединяет их при остановке двигателя. Это дает возможность за счет внутреннего запаса вакуума в системе произвести без участия двигателя одно-два торможения.

Основные неисправности гидровакуумного усилителя и способы их устранения. В тормозной системе автомобилей-тягачей могут встретиться следующие неисправности, связанные с работой гидровакуумного усилителя.

1.             Полное или частичное торможение колесавтопоезда без нажатия на педаль. Причинойможет быть отсутствие зазора между вакуумным клапаном и его седлом. В этом случаев полости IV клапана управления вместо разрежения будет создаваться атмосферное давление, под действием которого в полости камеры усилителя также появится атмосферноедавление. Вследствие этого будет иметь местотормозное действие системы.

Другой причиной появления в полости камеры усилителя атмосферного давления, когда педаль тормоза не нажата, может быть нарушение герметичности в соединениях шлангов, штуцеров, крышек и т. д. В этом случае следует найти повреждение и устранить его.

2.             Увеличение требуемого усилия на педальпри торможении автопоезда. Причиной можетбыть полное или частичное выключение усилителя из работы. Это может произойти вследствие недостаточного хода атмосферного (шарикового) клапана или вследствие полного

отсутствия этого хода. В результате этого в полости камеры усилителя создается постоянное разрежение и диафрагма не будет перемещаться, так как давления в полостях камеры усилителя будут уравновешены. Для устранения неисправности следует отрегулировать ход атмосферного клапана, для чего снять крышку клапана управления, отвести ее вместе со шлангом и вывернуть пробку вакуумного клапана, а затем ввернуть вакуумный клапан в гайку, что вызовет через коромысло увеличение хода атмосферного клапана; проверку хода (1 —1,5 мм) следует производить при нажатии на педаль тормоза.

3. Снижение эффективности торможения (мягкая педаль). Причиной может быть попадание в тормозную систему воздуха. Для устранения неисправности следует прокачать систему.

Соединение гидравлического привода тормозов тягача и полуприцепа осуществлено соединительной головкой (фиг. 246). Одна часть головки установлена на тягаче, а другая — на полуприцепе.Соединительная головка сохраняет работоспособность гидравлических приводов после расцепки тягача с полуприцепом, исключая попадание в приводы воздуха и утечку жидкости. Благодаря этому не требуется дополнительной прокачки тормозов при последующем соединении и совместной работе тягача и полуприцепа.

При соединении частей головки после сцепки тягача и полуприцепа накидная гайка должна быть надежно завернута на корпусе.

После расцепки тягача и полуприцепа часть головки, установленная на тягаче, должна быть закрыта специальной пробкой, которая придается к каждому тягачу, а часть головки, установленная на полуприцепе, должна быть навернута на втулку, приваренную к кузову в передней части с левой стороны. Это предохранит части головки от попадания в них грязи.

Необходимо всегда помнить, что расцеплять тягач и полуприцеп можно только тогда, когда разъединена соединительная головка гидравлического привода тормозов и вынут штепсель из розетки электропроводки полуприцепа. Иначе возможен обрыв резиновых шлангов на полуприцепе, в результате чего автопоезд останется без тормозов, а полуприцеп — без освещения.

Уход за гидровакуумным усилителем и соединительной головкой состоит в содержании их в надлежащей чистоте и герметичности всех соединений.

4.______

5.______

6.Как проверить и отрегулировать ручной тормоз автомобиля

Проверка стояночного тормоза

Через каждые 30 000 км пробега проверяйте и при необходимости регулируйте стояночный тормоз. Согласно Правилам дорожного движения стояночный тормоз должен удерживать автомобиль на уклоне 25% при перемещении рычага стояночного тормоза на 2–8 щелчков (на моделях выпуска до 1995 г. на 5–7 щелчков). Для проверки стояночного тормоза установите автомобиль на ровной площадке. Поднимите рычаг стояночного тормоза на 2–3 щелчка. Поддомкратьте одно из задних колес. Если ручной тормоз отрегулирован правильно, провернуть поднятое колесо можно лишь прило- жив очень большое усилие.

Проверьте рабочий ход рычага. Если ход рычага больше 8 щелчков, ручной тормоз не удержит автомобиль на спуске. Если ход меньше 2 щелчков, во время движения возможна частичная блокировка колес. В обоих случаях стояночный тормоз надо отрегулировать. Регулировку рекомендуем проводить на подъемнике, эстакаде или смотровой канаве.

ПОРЯДОК ВЫПОЛНЕНИЯ

Поднимите рычаг стояночного тормоза на 1–2 щелчка Ослабьте контргайку уравнителя. Заверните регулировочную гайку уравнителя до момента натяжения троса привода стояночного тормоза. Если трос не удается натянуть, замените его. Проверьте — полный рабочий ход рычага стояночного тормоза должен составлять 2–4 щелчка После проверки рабочего хода до упора затяните контргайку уравнителя. Опустите рычаг стояночного тормоза до упора и проверните задние колеса. Они должны вращаться равномерно, без рывков.

 

 

 

Сделать бесплатный сайт с uCoz